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GENERALIZED SUFFICIENT STRENGTH CRITERIA.

DESCRIPTION OF THE PRE-FRACTURE ZONE

UDC 539.375V. M. Kornev

A generalized sufficient discrete–integral strength criterion is proposed for opening mode cracks in
structured media. The criterion is constructed for materials of two types: an elastoplastic material
with restricted deformability and an elastic ideal-plastic material. A detailed description of the pre-
fracture zone is given. The cross-sectional dimension of the plastic zone near the tip of the initial
crack is used as the cross-sectional dimension of the pre-fracture zone. It is assumed that the critical
opening of the initial crack depends on the deformability of plastic materials. Based on the ratio of
the length of the pre-fracture zone to the length of the initial crack, the following fracture types are
distinguished: brittle, quasibrittle, quasiviscous, and viscous. For the first three types, the fracture
curves are described in detail. Exact and approximate equations are proposed that relate critical
parameters to the theoretical strength of a granular material, grain size, and parameters characterizing
the averaging interval and the damage of the initial and deformed material.

Introduction. Panasyuk et al. [1] studied comprehensively the dependence of the critical stress intensity
factor (SIF) KIc on the standard mechanical characteristics of a material with allowance for the structure of this
material. Results of this study are discussed in [2]. Necessary information on fracture criteria taking into account
the structural parameters of materials can be found in [2, 3].

Following the Neuber–Novozhilov approach [4, 5], Kornev [6, 7] used the necessary fracture criterion [5] to
determine the critical load beyond which a pre-fracture zone begins to form ahead of the crack tip in materials with
structure. For the critical load predicted by the sufficient fracture criterion for a macrocrack [5], the length of the
pre-fracture zone reaches the critical value and the solid is split into fragments (see [8–10]). It should be noted that
the length of the pre-fracture zone (see [8–10]) in the Leonov–Panasyuk–Dugdale model [11, 12] is determined by
standard mechanical characteristics.

1. Interrelation between the Criteria and Physicomechanical Models of the Pre-Fracture Zone.
We consider a solid body with a structural hierarchy i = 1, 2, . . . , i0 (i0 is the total number of structures) [6, 7]. Let
the solid with a sharp crack be loaded in such a manner that the first mode of fracture under plane stresses occurs.
An opening mode crack is modeled by a bilateral cut. It is assumed that of the critical stresses σ0(i)

∞ predicted by
the necessary criterion, the minimum critical stress corresponds to the macrostructure with number i = 1, i.e.,

minσ0(i)
∞ = σ0(1)

∞ , (1)

and the critical stresses σ∗(1)
∞ predicted by the sufficient criterion for a macrostructure satisfy the inequalities

σ∗(1)
∞ > σ0(1)

∞ , σ∗(1)
∞ < σ0(i)

∞ (i = 2, 3, . . . , i0). (2)

The first inequality in (2) is obvious (the critical stresses predicted by the sufficient criterion are higher than those
predicted by the necessary criterion for a macrostructure); if the subsequent inequalities are satisfied, pre-fracture
zones are not formed for meso- and microstructures (i = 2, 3, . . . , i0). Moreover, we assume that for the critical
stresses σ∗(1)

∞ , satellite cracks do not appear ahead of the crack tip (see [6, 7]). Thus, a pre-fracture zone is formed
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only for the microstructure i = 1 (its length is denoted by ∆1), and other pre-fracture zones which generate satellite
cracks are not formed ahead of this zone.

The necessary discrete–integral criterion of brittle strength (pre-fracture zone is absent: ∆1 = 0 and
K0

I∞ > 0) has the form [6, 7]

x > 0:
1

k1r1

n1r1∫
0

σy(x, 0) dx = σm1, x > 0: σy(x, 0) ' σ∞ +
K0

I∞
(2πx)1/2

. (3)

For a macrostructure, the sufficient discrete–integral criteria of quasibrittle, quasiviscous or viscous strength, which
describe development of the pre-fracture zone, are written as follows:

— For the pre-fracture zone formed [8–10] (critical length of the pre-fracture zone ∆∗1 > 0, hm1 > 0,KI > 0,
and an elastoplastic material with restricted deformability), we have

x > 0:
1

k1r1

n1r1∫
0

σy(x, 0) dx = σm1, x > 0: σy(x, 0) ' σ∞ +
KI

(2πx)1/2
,

(4)

x 6 0: 2v∗ = ((æ + 1)/G)KI

√
∆∗1/(2π) = hm1;

— For the pre-fracture zone of critical length ∆∗∗1 [classical case of an elastic ideal-plastic material (see, e.g.,
[13]) and KI = 0], we have

x > 0:
1

k1r1

n1r1∫
0

σy(x, 0) dx = σm1, σy(x, 0) ' σm1 +
KI

(2πx)1/2
,

(5)
x 6 0: δm1 = πl0(σ∞/E)(σ∞/σm1);

KI = KI∞ +KI∆1 , KI∞ > 0, KI∆1 < 0, K0
I∞ = K0

I∞(l0), KI∞ = KI∞(l). (6)

In relations (3)–(6), σy are normal stresses on the continuation of the crack [they have a singular component
for criteria (3) and (4)], Oxy is a Cartesian coordinate system whose origin lies at the right tip of the sharp
macrocrack, r1 is the characteristic linear dimension of the material’s macrostructure, for example, the grain size
of a polycrystalline material, n1 and k1 are numbers (n1 > k1, where k1 > 1 is the number of defect-free grains),
n1r1 is the averaging interval for the granular material (n1 > 1), (n1 − k1)/n1 is the coefficient that takes into
account the damage of the granular material in the interval n1r1, σm1 is the “theoretical” strength of the granular
material (yield point), hm1 = 2v∗(−∆1) is the critical opening of the crack for ∆1 = ∆∗1, 2v(x) is the crack opening,
æ = (3 − ν)/(1 + ν) for plane stresses, ν is the Poisson’s ratio, E and G are the Young’s and shear moduli,
respectively, δm1 is the critical crack opening for ∆1 = ∆∗∗1 , l0 and l = l0 + ∆1l = l0 + ∆1 are the halflengths of
the initial and model internal cracks, respectively [the halflength of the initial crack is used in criterion (3) and the
halflength of the model crack l is used in criteria (4) and (5)], the total SIF KI > 0 is calculated from relation (6)
for the corresponding problem, KI∞ is the SIF generated by the remote stresses σ∞ (KI∞ = σ∞

√
πl for an internal

crack), and KI∆1 is the SIF generated by the stresses η1σm1 in the vicinity of the crack tip in the pre-fracture zone in
accordance with the Leonov–Panasyuk–Dugdale model [11, 12]. The parameter η1 characterizing the damage of the
material in the pre-fracture zone (see, e.g., [14, Fig. 4.2.4] and [15, Fig. 35]) can be related to the plastic loosening
of the material. Four main types of fracture are shown in [16, Fig. 1]. Hereafter, subscript 1 is omitted (except
for the parameter r1, which characterizes the linear dimension of the material macrostructure) since a pre-fracture
zone is formed only in a macrostructure [see relations (1) and (2)].

Remark 1. To formulate criteria (3) and (4), we use the relation σy(x, 0) ' σ∞ + K0
I∞(2πx)−1/2, where

x > 0. This function coincides with the exact solution σy(x, 0) = σ∞(x+ l0)[x(x+ 2l0)]−1/2 (x > 0) for an internal
crack as x→∞ and has the same singularity for x→ 0.

The criteria (3)–(5) proposed above can be classified by the number of parameters used [3]: criteria (3) and
(5) are one-parameter force criteria (the parameter σm is often related to the yield point) and criterion (4) is a two-
parameter strain-force criterion (these parameters are σm and hm). Thus, criterion (4) contains not only the yield
point but also the parameter hm, which characterizes the critical crack opening and depends on the deformability of
the material. It is obvious that in the limiting passage from an elastoplastic material with restricted deformability
[criterion (4)] to an elastic ideal-plastic material [criterion (5)], part of useful information is lost. It is therefore
expedient to combine criteria (4) and (5) to obtain a generalized sufficient criterion.

764



Fig. 1

2. Types of Fracture. Criterion (3) describes brittle fracture (first type), whereas criteria (4) and
(5) describe quasibrittle fracture (second type) and are applicable for quasiviscous and viscous fracture (third and
fourth types, respectively) depending on which type of fracture is realized (see [16]). The second, third, and fourth
types of fracture do not contradict the Leonov–Panasyuk–Dugdale model [11, 12] or its modification. We describe
quantitatively the four main types of fracture determined by the relative length of the pre-fracture zone ∆/l0:
1) ∆ ≡ 0; 2) ∆/l0 = o(1); 3) ∆/l0 = O(1) or l0/∆ = O(1); 4) l0/∆ = o(1). For brittle fracture, a pre-fracture
zone is absent; for quasibrittle fracture, the length of the pre-fracture zone is much smaller than the length of the
initial crack: ∆� l0; for quasiviscous fracture, the length of the pre-fracture zone is comparable with the length of
the initial crack: ∆ ≈ l0; for viscous fracture, the length of the initial crack is much smaller than the length of the
pre-fracture zone: l0 � ∆.

The above classification corresponds to the Leonov–Panasyuk–Dugdale model [11, 12] if the plastic zones
near the tips of an internal crack do not merge and the boundary of the plastic zone of an edge crack does not reach
the surface of the solid. These restrictions can be of fundamental importance for the quasiviscous and viscous types
of fracture.

Figure 1 shows σ–ε diagrams for elastic ideal-plastic and nonlinear-elastoplastic materials. The segment of
nonlinear deformation ab is shown by a dashed curve (σm is the yield point, ε0 and ε′0 are the limiting relative
elongations of the elastic and nonlinear-elastic materials, respectively, and εm is the limiting elongation of the
material; for the elastic ideal-plastic material, it is assumed that εm =∞). Of fundamental importance for further
consideration are the parameters εm − ε0 and εm − ε′0, which characterize the maximum relative elongations of the
plastic material and determine the critical crack opening if the cross-sectional dimension of the pre-fracture zone h
is known. The proposed model of a material ignores differences between the σ–ε diagrams of the elastic ideal-plastic
and nonlinear elastoplastic materials.

Remark 2. It should be kept in mind that for a nonlinear-elastoplastic material, the stress-field singularities
at the crack tip can change [17].

3. Critical Crack Opening. We determine the critical crack opening (CCO) for materials of two types. For
an elastoplastic material with restricted deformability, the critical parameters have the form ∆ = ∆∗ and σ∞ = σ∗∞,
and for an elastic ideal-plastic material, the critical parameters are ∆ = ∆∗∗ and σ∞ = σ∗∗∞ . The proposed critical
parameters ∆∗ or ∆∗∗ cannot be compared directly with the critical parameter of the CCO criterion (see [3, Sec. 3])
since the linear dimension that characterizes the cross section of the pre-fracture zone is unknown. We estimate the
cross-sectional dimension of the pre-fracture zone h in the vicinity of the crack tip. As the dimension h we use the
cross-sectional dimension of the plastic zone near the tip of an initial crack of length l0. It should be noted that
large plastic strains are typical of the failure of plastic metals [15].

3.1. Quasibrittle Fracture (∆∗ � l0 and σ∗∞ � σm or ∆∗∗ � l0 and σ∗∗∞ � σm). We assume that the remote
stresses are much lower than the yield point: σ∗∞ � σm or σ∗∗∞ � σm. In this case, we can use Irwin’s plastic-strain
correction. The estimate of the plastic zone size coincides with that for the plane stresses (see, e.g., [13]):

ρ(θ) = (K0
I∞)2((3/2) sin2 θ + 1 + cos θ)/(4πσ2

m), K0
I∞ = K0

I∞(l0), (7)

where ρ is the radius vector and θ is the polar angle. Since θ = π/2 at the crack tip, from (7) we obtain the
cross-sectional dimension of the pre-fracture zone for plane stresses

h = 2ρ(π/2) = 5(K0
I∞)2/(4πσ2

m). (8)
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For elastoplastic and nonlinear elastoplastic materials, the critical crack opening 2v∗(−∆) = hm is determined,
respectively, by the formulas

hm = 5(K0
I∞)2(εm − ε0)/(4πσ2

m), hm = 5(K0
I∞)2(εm − ε′0)/(4πσ2

m). (9)

The parameters of the CCO hm in relation (9) are related to the standard characteristics of the σ–ε diagrams of
the materials (Fig. 1). For internal cracks, the CCO in the above-mentioned materials is given by formulas

hm = 5(σ∗∞/σm)2l0(εm − ε0)/4, hm = 5(σ∗∞/σm)2l0(εm − ε′0)/4. (9′)

For an elastoplastic material with restricted deformability, the inequality εm < ∞ holds in the presence of
plasticity, and for an elastic ideal-plastic material, we have εm = ∞. The following relation is valid: ∆∗ 6 ∆∗∗.
Whether or not the pre-fracture zone reaches the critical length ∆∗∗ depends on the plasticity margin of the material
or, more precisely, its deformability margin. For an elastoplastic material with restricted deformability for plasticity
with K∗I > 0, the length of the pre-fracture zone ∆ cannot exceed the critical length ∆∗. For an elastoplastic material
with restricted deformability for plasticity with K∗∗I = 0, the length of the pre-fracture zone ∆ coincides with ∆∗∗.
For an elastic ideal-plastic material for KI = 0, we always have ∆∗∗ since εm =∞.

3.2. Quasiviscous and Viscous Types of Fracture [∆∗ ≈ l0, σ∗∞ = O(σm), ∆∗∗ ≈ l0, σ∗∗∞ = O(σm), l0 < ∆∗,
σ∗∞ ≈ σm, l0 < ∆∗∗, and σ∗∗∞ ≈ σm but σ∗∞ < σm and σ∗∗∞ < σm]. Relations (7) and (8) are not applicable to
viscous fracture since they are obtained under the restriction σ∗∞ � σm or σ∗∗∞ � σm; relations (7) and (8) can be
used in the case of quasiviscous fracture for σ∗∞ < σm or σ∗∗∞ < σm.

4. Elastic Ideal-Plastic Material (εm =∞). We study the behavior of an elastic ideal-plastic material
in the vicinity of a crack tip. Using the condition that the total SIF of an internal crack K∗∗I vanishes, we obtain
the following equation for the critical length of the pre-fracture zone ∆∗∗ (the total SIF cannot be negative since
the crack edges overlap for KI < 0, which can easily be verified [18])

K∗∗I = K∗∗I∞ +K∗∗I∆ = 0, K∗∗I∞ = σ∗∗∞
√
πl∗∗, l∗∗ = l0 + ∆∗∗, (10)

K∗∗I∆ = −(2σm
√
l∗∗/
√
π) arccos (1−∆∗∗/l∗∗) = −σm

√
πl∗∗ [1− (2/π) arcsin (1−∆∗∗/l∗∗)].

The critical crack opening at the tip of the initial crack δm can be written in the form [13]

δm = (8σml0/(πE)) ln (sec (πσ∗∗∞/(2σm))), n = k = 1, η1 = 1. (11)

Remark 3. The classical sufficient strength criterion (5) is reformulated so as to describe fracture of
structured bodies. However, formal calculations coincide with classical results if n = k = 1 and η = 1.

This case is considered below.
Obviously, the critical length of the pre-fracture zone ∆∗∗ ahead of the initial crack l0 (or in the case of a

fictitious crack l∗∗) can be written in the following form [see (10)]:

∆∗∗/l0 = sec (πσ∗∞/(2σm))− 1, ∆∗∗/l∗∗ = 1− cos (πσ∗∞/(2σm)). (12)

4.1. Quasibrittle Fracture (∆∗∗ � l0 and σ∗∞ � σm). In the quasibrittle approximation, after some transfor-
mations in relations (12), we obtain the critical length of the pre-fracture zone ∆∗∗ for the initial (l0) or fictitious
(l∗∗) cracks by retaining the leading terms of the expansions (σ∞/σm � 1):

∆∗∗/l0 = (π2/8)(σ∗∗∞/σm)2, ∆∗∗/l∗∗ = (π2/8)(σ∗∗∞/σm)2. (13)

The opening at the initial-crack tip δm is obtained by retaining the first term in series (11) (see [13]):

δm = πl0(σ∗∗∞/E)(σ∗∗∞/σm). (14)

It should be noted that the extent of the pre-fracture zone ∆∗∗ in (13) is approximately equal to the extent
of the plastic zone, and formula (14) for the opening at the initial-crack tip δm is frequently used in experimental
fracture mechanics [13].

Let us compare the quantities δm and hm, which characterize the initial-crack opening in the sufficient
criteria (5) and (4). For K∗I → 0, we obtain δm ≈ hm; using the first relation in (9′) and relation (14), we finally
obtain the approximate equality

εm − ε0 ≈ 4πσm/(5E), (15)

which separates the regions of applicability of these criteria for internal cracks. Figure 2 shows the regions of
applicability of the sufficient criteria (4) and (5) for internal cracks in accordance with (15). These regions are
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Fig. 2

determined by the relation between the “theoretical” strength, modulus of elasticity, and deformability of the
plastic material. In Fig. 2, region I refers to the classical criterion of quasibrittle strength (5), region II to the
criterion of quasibrittle strength (4), and the axis εm− ε0 = 0 to the criterion of brittle strength (3). Only few real
materials correspond to region I (for example, gold and some plastics), most metal structural materials correspond
to region II, and almost all ceramic materials correspond to the part of region II adjacent to the axis εm − ε0 = 0.

4.2. Quasiviscous Fracture [∆∗∗ ≈ l0 and σ∗∗∞ = O(σm) but σ∗∗∞ < σm]. We obtain an analytical expression
for the critical length of the pre-fracture zone ∆∗∗ and the opening at the tip of the initial crack δm. Retaining two
terms in expansions for (11) and (12), we obtain

∆∗∗

l0
=
π2

8

(σ∗∗∞
σm

)2[
1 +

5π2

48

(σ∗∗∞
σm

)2]
,

∆∗∗

l∗∗
=
π2

8

(σ∗∗∞
σm

)2[
1− π2

48

(σ∗∗∞
σm

)2]
,

(16)

δm = πl0(σ∗∗∞/E)(σ∗∗∞/σm)[1 + (π2/24)(σ∗∗∞/σm)2].

Obviously, the second terms in square brackets in (16) are corrections to the main part of the solution. As
in Sec. 3, we compare the quantities δm and hm. Then, for internal cracks, we obtain

εm − ε0 ≈ (4π/5)(σm/E)[1 + (π2/24)(σ∗∗∞/σm)2]. (17)

The last term on the right side of relation (17) depends on the ratio σ∗∗∞/σm. For quasiviscous fracture, the regions
of applicability of the sufficient criteria (4) and (5) [see relations (15) and (17) and Fig. 2] are shifted slightly
compared to such regions for quasibrittle fracture.

5. Elastoplastic Material with Restricted Deformability (εm < ∞). If the deformability of an
elastoplastic material is restricted, the equation for the critical length of the pre-fracture zone ∆∗ follows from the
last relation of the sufficient criterion (4), the total SIF KI of the internal crack being nonzero (KI > 0) [18]:

KI = KI∞ +KI∆, KI∞ = σ∞
√
πl, l = l0 + ∆,

(18)
KI∆ = −(2ησm

√
l/
√
π) arccos (1−∆/l) = −ησm

√
πl[1− (2/π) arcsin (1−∆/l)].

It is obvious [see (18)] that the total and critical total SIFs KI and K∗I are complex functions of the length ∆ and
the critical length of the pre-fracture zone and ∆∗, respectively: KI = KI(∆) and K∗I = K∗I (∆∗).

After approximate transformation of criterion (4), we obtain two nonlinear equations that relate the critical
parameters K∗I , ∆∗, σ∗∞, and hm:

K∗I
σ∗∞
√
r1

=
√
π

2
n
(σm
σ∗∞

k

n
− 1
)
, ∆∗ = 2π

( G

æ + 1
hm
K∗I

)2

. (19)

Finally, we obtain the equation for the critical length of the pre-fracture zone ∆∗ by substituting expression (18)
for the critical total SIF K∗I into the second equation (19):{σ∗∞

σm
− η
[
1− 2

π
arcsin

(
1− ∆∗

l∗

)]}√∆∗

l∗
=
√

2
æ + 1

G

σm

hm
l∗
. (20)

The critical length of the pre-fracture zone ∆∗ satisfies the natural restrictions 0 < ∆∗/l∗ < 1 for l0 > 0 and
l∗ = l0 + ∆∗. No other restrictions were imposed on the critical length of the pre-fracture zone ∆∗ in relations (19)
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and (20). It is worth noting that relations (19) and (20) contain only standard stiffness and strength characteristics
and also the linear dimension r1 that characterizes the grain size of the macrostructure and the damage parameter
η that takes into account the plastic loosening of the material.

5.1. Quasibrittle Fracture (∆∗ � l0 and σ∗∞ � σm). We determine the critical length of the pre-fracture
zone ∆∗ for quasibrittle fracture. If ∆∗ � l0, then ∆∗ � l∗. Hence, the last relation in (20) can be simplified
substantially taking into account that arcsin (1 − ∆∗/l∗) ' π/2 −

√
2∆∗/l∗. Finally, we obtain the following

quadratic equation for the parameter
√

∆∗/l∗:(√∆∗

l∗

)2

− π

2
√

2
σ∗∞
ησm

√
∆∗

l∗
+

π

2(æ + 1)
G

ησm

hm
l∗
' 0.

Neglecting quantities of high order of smallness compared to unity, we express the smaller root of the quadratic
equation in explicit form √

∆∗

l∗
'
√

2
æ + 1

G

σ∗∞

hm
l∗
.

The last relation implies that the relative dimension of the pre-fracture zone
√

∆∗/l∗ depends linearly on the critical
crack opening hm.

For convenience, the approximate algebraic equations relating the critical parameters σ∗∞, l∗, ∆∗, and hm
to the theoretical strength σm and grain size r1 of a granular material, and the parameters n, k, and η, which
characterize the averaging interval and the damage of the initial and plastically deformed material, respectively,
can be written in one of the following forms:

2l∗

r1
'
(σm
σ∗∞
− n

k

)2 k2

n

(
1− 2

√
2

π
η
σm
σ∗∞

√
∆∗

l∗

)−2

,

√
∆∗

l∗
'
√

2
æ + 1

G

σ∗∞

hm
l∗
,

(21)

σ∗∞
σm
'
[√n
k

√
2l∗

r1

(
1− 2

√
2

π
η
σm
σ∗∞

√
∆∗

l∗

)
+
n

k

]−1

.

The fracture curves for an elastoplastic material with restricted deformability (21) become the fracture curves for
a brittle material if the length of the pre-fracture zone tends to zero: ∆∗ → 0.

5.2. Quasiviscous Fracture [∆∗ ≈ l0 and σ∗∞ = O(σm) but σ∗∞ < σm]. The simplifications in Sec. 5.1 cannot
be used to study the pre-fracture zone for quasiviscous fracture. Therefore, one has to solve Eq. (20) numerically
under the natural restrictions 0 < ∆∗/l∗ < 1 for specified initial parameters of this equation. The root ∆∗/l∗ is
used to find the critical SIF K∗I . The transcendental equation relating the critical parameters σ∗∞, l∗, ∆∗, and hm
to the theoretical strength of a granular material σm, the grain size r1, and the parameters n, k, and η has the
following form [see the first equation in (19)]:√

2l∗

r1

{
1−
√

2η
σm
σ∗∞

[
1− 2

π
arcsin

(
1− ∆∗

l∗

)]}
=

k√
n

(σm
σ∗∞
− n

k

)
. (22)

The structure of the transcendental equation (22) is similar to that of Eqs. (21); therefore, it is expedient to
choose the root of Eqs. (21) as a zero approximation to find the roots of Eq. (22) by the method of successive
approximations.

6. Discussion. Fracture curves were constructed for elastoplastic materials with unrestricted deformabil-
ity within the framework of the Leonov–Panasyuk–Dugdale model [11, 12]. To construct these curves, we used
information on a crack with connections between the edges in the vicinity of the crack tip for isotropic materials
(see also [19]). The generalized sufficient criterion (4)–(6) fills the gap between the description of fracture of brittle
bodies with structure [see criterion (3)] and that of elastoplastic bodies with restricted deformability. The suffi-
cient criterion (4) for a structured elastoplastic material with restricted deformability is a two-parameter criterion.
Equations (21) and (22) contain two parameters of the material (in addition to the structural parameter r1): the
theoretical strength (yield point) σm and the critical crack opening hm. The approach proposed does not contradict
Griffith’s idea: for brittle structured bodies, the necessary criterion (3) yields the SIF K∗I |∆∗=0 [see the first relation
in (21)].

The critical crack opening hm is expressed in terms of the limiting relative elongation of the material εm.
In the limiting case εm → ε0, we have a brittle material, and in the case εm →∞, we have an elastic ideal-plastic
material (classical solution).
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The sufficient criterion (4)–(6) contains the material-structure parameter r1, the theoretical strength (yield
point) of the structured material σm, and the limiting relative elongation of the material εm. The material-structure
parameter r1 is determined by standard methods of physics of metals. It is expedient to determine the theoretical
tensile strength σm for three-point bending of specimens whose cross-sectional dimension ranges from 20r1 to 50r1.
In this case, the specimen surface should be processed appropriately to reduce the scatter of experimental data.
The limiting relative elongation of the material εm is obtained by constructing a standard σ–ε diagram.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 01-01-00873
and 00-15-96180).
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